Barunava Patra

Barunava Patra

Barunava Patra

Barunava Patra

Principal Investigator, Scientist III

Faculty
University of Kentucky 1401 University Drive Lexington, KY 40546-0236

Last Revised: Feb 12th, 2024

Professional Biography

https://scholar.google.com/citations?user=ugNPTtIAAAAJ&hl=en 

https://www.researchgate.net/profile/Barunava_Patra2

Publications

  • Hou X, Singh SK, Werkman JR, Liu Y, Yuan Q, Wu X, Patra B, Sui X, Lyu R, Wang B, Liu X, Li Y, Ma W, Pattanaik S, Yuan L (2023) Partial desensitization of MYC2 transcription factor alters the interaction with jasmonate signaling components and affects specialized metabolism. International Journal of Biological Macromolecules. 252:126472
  • Yang Y, Kong Q, Tee WT, Li Y, Low PM, Patra B, Guo L, Yuan L, Ma W. (2023) Transcription factor bZIP52 modulates Arabidopsis seed oil biosynthesis through interaction with WRINKLED1. Plant Physiology. doi: 10.1093/plphys/kiad270
  • Singh SK, Patra B, Singleton JJ, Liu Y, Paul P, Sui X, Suttipanta N, Pattanaik S, Yuan L (2022) Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseusMethods in Molecular Biology 2505:203-221.
  • Ren G, Li L, Patra B, Li N, Zhou Y, Zhong C, Wang Y, Yuan L, Wang X. (2023) GhTCP7 suppresses petal expansion by interacting with the WIP-type zinc finger protein GhWIP2 in Gerbera hybridaJournal of Experimental Botany. (PMID: 37102769)
  • Patra B, Liu Y, Singleton JJ, Singh SK, Pattanaik S, Yuan L. (2022) Virus-induced gene silencing as a tool to study regulation of alkaloid biosynthesis in medicinal plants. Methods in Molecular Biology. 2469:155-164.

  • Qin Q, Humphry M, Gilles T, Fisher A, Patra B, Singh SK, Li D, & Yang S (2021) NIC1 cloning, and gene editing generates low nicotine tobacco plants. Plant Biotechnology Journal (PMID:34468078).
  • Guo Y, Hiatt E, Bonnet C, Kudithipudi C, Lewis RS, Shi H, Patra B, Zhao X, Borne FD, Gilles T, Yang S, Zhang H, Zhang M, Lusso M, Berger IJ, Xu D, & Wen L (2021) Molecular regulation and genetic manipulation of alkaloid accumulation in tobacco plants. Studies in Natural Products Chemistry 70:119-149.
  • Liu YL, Patra B, Singh SK, Paul P, Zhou Y Li YQ, Wang Y, Pattanaik S, Yuan L. (2021) Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering. Biotechnology Letters 43:2085-2103.

  • Lyu R, Singh SK, Liu Y, Patra B, Zhou Y, Wang B, Pattanaik S, Yuan L. (2021) Reprogramming plant specialized metabolism by manipulating protein kinases. aBiotech. 1-14.

  • Huang R, Liu M, Gong G, Wu P, Patra B, Yuan L, Qin H, Wang X, Wang G, Liao H, Gao L, Yang C, Li H, Zhang S. (2021) The Pumilio RNA-binding protein APUM24 regulates seed maturation by fine-tuning the BPM-WRI1 module in Arabidopsis. Journal of Integrated Plant Biology. 63(7): 1240-1259.

  • Zhong C, Patra B, Tang Y, Li X, Yuan L, Wang X. (2021) A transcriptional hub integrating gibberellin-brassinosteroid signals to promote seed germination in Arabidopsis. Journal of Experimental Botany. 72(13):4708-4720.

  • Singh SK, Patra B, Paul P, Pattanaik S, Yuan L. (2021) BHLH IRIDOID SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseusPlant Direct 00:e00305. 

  • Liu X, Singh SK, Patra B, Liu Y, Wang B, Wang J, Pattanaik S, Yuan L (2021) Protein-phosphatase NtPP2C2b and MAP-kinase NtMPK4 act in concert to modulate nicotine biosynthesis. Journal of Experimental Botany 72(5):1661-1676.
  • Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2020) Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseusPlant Science 293:110408.
  • Paul P, Singh SK, Patra B, Liu X, Pattanaik S, Yuan L. (2020) Mutually Regulated AP2/ERF Gene Clusters Modulate Biosynthesis of Specialized Metabolites in Plants. Plant Physiology 182:840-856.
  • Liu YL*, Patra B*, Pattanaik S, Wang Y, Yuan L. (2019) GATA and PIF transcription factors regulate light-induced biosynthesis of vindoline in Catharanthus. Plant Physiology 180:1336-1350.  * Equal contribution
  • Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, Liu X, Patra B, Wei Y, Li S, Wang L (2019) VvWRKY8 represses stilbene synthase genes through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. Journal of Experimental Botany 70:715-729.
  • Sui X, Kumar Singh S, Patra B, Schluttenhofer C, Guo W, Pattanaik S, Yuan L. (2018) Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. Journal of Experimental Botany 69: 4267-4281.
  • Patra B, Pattanaik S, Schluttenhofer C, Yuan L. (2018) A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseusNew Phytologist 217:1566-1581.
  • Liu, Y, Song Y, Zeng S, Patra B, Yuan L, Wang Y (2017). Isolation and characterization of a salt stress-responsive betaine aldehyde dehydrogenase in Lycium ruthenicum Murr. Physiologia Plantarum 163:78-87.
  • Shen EM*, Singh SK*, Ghosh JS, Patra B, Paul P, Yuan L, & Pattanaik S ( 2017). The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Scientific Reports (doi:10.1038/srep43027). * Equal contribution 
  • Paul P,  Singh SK, Patra B,  Sui X, Pattanaik S, & Yuan L (2016). A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytologist 213:1107-1123 (doi:10.1111/nph.14252). 
  • Jia X, Shen J, Liu H, Li F,  Ding N, Gao C, Pattanaik S, Patra B, Li R, & Yuan L (2015). Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283-293 (doi 10.1007/s00425-015-2305-5). 
  • Schluttenhofer C, Pattanaik S, Patra B, & Yuan L (2014). Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics 15:502 (doi:10.1186/1471-2164-15-502). 
  • Patra B*, Schluttenhofer CM*, Wu Y, Pattanaik S, & Yuan L (2013). Transcriptional regulation of secondary metabolism in plants. BBA-Gene Regulatory Mechanisms 1829(11):1236-1247 (http://doi.org/10.1016/j.bbagrm.2013.09.006) * Equal contribution.  
  • Pattanaik S, Patra B, Singh S, & Yuan L (2014). An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Frontiers in Plant Science 5:259 (doi:10.3389/fpls.2014.00259). 
  • Yang Z*, Patra B*, Li R, Pattanaik S, & Yuan L (2013). Promoter analysis revealed cis-regulatory motifs associated with the expression of CrWRKY1 in Catharanthus roseus plants. Planta 238:1039-1049 (doi:10.1007/s00425-013-1949-2). * Equal contribution 
  • Patra B, Pattanaik S, & Yuan L (2013). Proteolytic degradation of the flavonoid regulators, TRANSPARENT TESTA8 and TRANSPARENT TESTA GLABRA1, in Arabidopsis is mediated by the ubiquitin/26Sproteasome system. Plant Signaling & Behavior. Volume 8 Issue 10, eLocation ID: 25901. 
  • Chatterjee J, Patra B, Mukherjee R, Basak P, Mukherjee S, Ray S, Bhattacharyya S, Maitra S, Ghosh Dastidar K, Ghosh S, Sengupta S, & Majumder AL (2013). Cloning, characterization and expression of a chloroplastic fructose-1,6-bisphosphatase from Porteresia coarctata conferring salt-tolerance in transgenic tobacco. Plant Cell Tissue Organ Culture 114:395–409 (doi:10.1007/s11240-013-0334-y). 
  • Patra B, Pattanaik S, & Yuan L (2013). Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and  ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. The Plant Journal 74:435-447 (doi:10.1111/tpj.12132). 
  • Suttipanta, N*, Pattanaik. S*, Kulshrestha M, Patra B, Singh SK, & Yuan L (2011). The Transcription Factor CrWRKY1 Positively Regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiology 157:2081-2093 (http://dx.doi.org/10.1104/pp.111.181834) * Equal contribution. 
  • Bai Y*, Pattanaik S*, Patra B, Werkman JR, Xie CH, & Yuan L (2011). Flavonoid-specific basic helix-loop-helix regulators NtAn1a and NtAn1b of tobacco are originated from its two ancestors and functionally active. Planta 234:363-375 (doi:10.1007/s00425-011-1407-y). 
  • Pattanaik S*, Kong Q*, Zaitlin D, Werkman JR, Xie CH, Patra B, & Yuan L (2010). Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061-1076 (doi: 10.1007/s00425-010-1108-y). *Equal contribution 
  • Ray S, Patra B, Das-Chatterjee A, Ganguli A , & Majumder AL (2010). Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene(s) in Oryza sativa: Comparison with the wild halophytic rice, Porteresia coarctata. Planta 231:1211-1227 (doi:10.1007/s00425-010-1127-8). 
  • Patra B, Ray S, Richter A, & Majumder AL (2010). Enhanced salt-tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245:143-152 (doi:10.1007/s00709-010-0163-3). 
  • Sengupta S, Patra B, Ray S, & Majumder AL (2008). Inositol methyl transferase from a halophytic wild rice Porteresia coarctata Roxb.(Tateoka): its expression pattern under abiotic stress. Plant Cell and Environment 31:1442-1459 (doi:10.1111/j.1365-3040.2008.01850.x). 
  • Patra B, Ghosh Dastidar K, Maitra S, Bhattacharyya J, & Majumder AL (2007). Functional identification of sll1383 from Synechocystis sp. PCC 6803 as L-myo-inositol 1-phosphate phosphatase (EC 3.1.3.25). Molecular cloning, expression and characterization. Planta 225:1547-1558 (doi:10.1007/s00425-006-0441-7) 
  • Majee M, Patra B, Mundree SG, & Majumder AL (2005). Molecular cloning, bacterial  overexpression and characterization of L-myo-Inositol 1- Phosphate Synthase from a monocotyledonous resurrection plant, Xerophyta viscosa Baker. Journal of Plant Biochemistry & Biotechnology (doi:10.1007/BF03263235).

http://uky.academia.edu/barunavapatra 

Research Interests

Plant Transcription Factors; transcriptional, post-transcriptional, and post-translational regulation of gene expression in secondary metabolism pathways.

Research Experience

  • Research Associate (January, 2009 - April, 2009); Bose Institute, India
  • Postdoctoral Scholar (April, 2009 - September, 2013); KTRDC/ University of Kentucky with Dr. Ling Yuan
  • Scientist I (October, 2013 - August, 2018); KTRDC/University of Kentucky
  • Scientist II (September, 2018 - January 2023); KTRDC/University of Kentucky
  • Scientist III (January 2023 - present); KTRDC/University of Kentucky

Education

Master of Science, Botany, Burdwan University , 2000
PhD., Life Sciences and Biotechnology, Bose Institute/Jadavpur University, 2009

Contact Information

1401 University Drive Lexington, KY 40546

859-257-5798